Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements.

نویسندگان

  • Sébastien Guiral
  • Tim J Mitchell
  • Bernard Martin
  • Jean-Pierre Claverys
چکیده

Natural competence for genetic transformation is the best-characterized feature of the major human pathogen Streptococcus pneumoniae. Recent studies have shown the virulence of competence-deficient mutants to be attenuated, but the nature of the connection between competence and virulence remained unknown. Here we document the release, triggered by competent cells, of virulence factors (e.g., the cytolytic toxin pneumolysin) from noncompetent cells. This phenomenon, which we name allolysis, involves a previously undescribed bacteriocin system consisting of a two-peptide bacteriocin, CibAB, and its immunity factor, CibC; the major autolysin, LytA, and lysozyme, LytC; and a proposed new amidase, CbpD. We show that CibAB are absolutely required for allolysis, whereas LytA and LytC can be supplied either by the competent cells or by the targeted cells. We propose that allolysis constitutes a competence-programmed mechanism of predation of noncompetent cells, which benefits to the competent cells and contributes to virulence by coordinating the release of virulence factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis.

Streptococcus pneumoniae is an important human pathogen that is able to take up naked DNA from the environment by a quorum-sensing-regulated process called natural genetic transformation. This property enables members of this bacterial species to efficiently acquire new properties that may increase their ability to survive and multiply in the human host. We have previously reported that inducti...

متن کامل

Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation.

Several streptococcal species are able to take up naked DNA from the environment and integrate it into their genomes by homologous recombination. This process is called natural transformation. In Streptococcus pneumoniae and related streptococcal species, competence for natural transformation is induced by a peptide pheromone through a quorum-sensing mechanism. Recently we showed that induction...

متن کامل

Transformation of encapsulated Streptococcus pneumoniae.

We describe the high-efficiency transformation of several virulent, encapsulated isolates of Streptococcus pneumoniae. Transformation was effected by the induction of competence with competence factor and was apparently the result both of inducing noncompetent recipients and overcoming the inhibition imposed by the capsule.

متن کامل

A Type IV Pilus Mediates DNA Binding during Natural Transformation in Streptococcus pneumoniae

Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discov...

متن کامل

Competence-Independent Activity of Pneumococcal Enda Mediates Degradation of Extracellular DNA and Nets and Is Important for Virulence

Membrane surface localized endonuclease EndA of the pulmonary pathogen Streptococcus pneumoniae (pneumococcus) is required for both genetic transformation and virulence. Pneumococcus expresses EndA during growth. However, it has been reported that EndA has no access to external DNA when pneumococcal cells are not competent for genetic transformation, and thus, unable to degrade extracellular DN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 24  شماره 

صفحات  -

تاریخ انتشار 2005